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ABSTRACT 

The thesis contains two ports which are self-contained 

units. i 

In Part ) we present several  results on the relation 

betweenl 

1. ^the problem of termination and equivalence of programs and 

abstract programs, and 

2. the first order predicate calculus. 

Part MJ is concerned with the relation betweerj^ 

1. the termination of  interpreted graphs, and 

2. properties of well-ordered sets and graph theory. 
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about the equivalence of abstract programs can be obtained Just by 

applying well-known results  In  logic. 

The corresponding result for programs suggests a new approach for 

proving the equivalence and correctness of  'real1 programs. 

Chapter 5 Is concerned mainly with the strong termination of 

non-determlnlstlc programs and non-deterministic abstract programs. 

In a non-deterministic program an assignment of values to  its 

Input variables does not necessarily define a unique execution of the 

program.    A non-deterministic program is said to terminate strongly 

If for each assignment of values to  i+s  inpv;  variables all  possible 

executions terminate. 

The results of this chapter are a generalization of the results 

obtained in Chapter 3. These results have an application In proving 

the convergence of recursively defined functions. 



INTRODUCTION 

In this part of the thesis we shall present several results on the 

relation between: 

1. the problem of termination and equivalence of programs and 

abstract programs, and 

2. the first order predicate calculus. 

An abstract program (program schema) is a program, but with 

function, predicate and constant symbols, instead of specified 

functions, predicates and constants. Thus, an abstract program AP 

may be thought of as represenMng a family of (real) programs. By 

specifying an Interpretation 3 for the symbols of AP, a program (AP,3) 

of this family is obtained. The program contains a set of input 

variables. Each assignment of values to the input variables defines 

a (unique) execution of the program. 

Chapter I (Mathematical Background) and Chapter 2 (Definitions) 

are introductory chapters. 



■^aP+er 3 ls «"«»•■ned with the termination problem of programs 

and abstract programs.    A program (AP,3>  Is said to terminate  If all 

possible executions of the program terminate.    An abstract program AP 

Is said to terminate  If for every  interpretation 3, th« program (AP.3) 

terminates. 

Given an abstract program AP, an algorithm  is described to 

construct a well-formed formula WAp of the first order predicate 

calculus, such that AP terminates  if and only  If WAp  Is unsatisflabls. 

I.e., ~WAp  is valid,    "nws  implies that conclusions about the 

termination of abstract programs can be obtained just by applying 

well-known results  in  logic. 

A corresponding result  for programs  is presented. 

•g>aPter 4  ls concerned with the equivalence problem of programs 

and abstract prcgrams. 

Two programs  (AP,3) and  (AP',3) are said to be equivalent  if 

their   »corresponding« execution sequences always terminate and give 

the same final value.    Two abstract programs AP and AP« are said to 

bo equivalent  If for every   interpretation 3, the corresponding 

programs  {AP,3) and  (AP1^) ard equivalent. 

Given two abstract programs AP and AP', an algorithm Is described 

to construct well-formed  formula WAp Ap, of the first-order predicate 

Iculus, such that AP and AP' are equivalent  If and only  If W 
AP,AP' 

Is unsatisfiable,   i.e., ~WApfAp,   is valid.    Consequently, conclusions 

ca 



CHAPTER I:    MATHEMATICAL BACKGROUND 

,     (    ) 

~3A v »a 

I.I   Jha (First-Order) fcadialä ÄiSülüi 
In this section we shall  partially follow the exposition of Davis 

and Putnam [I960]. 

The symbols of which our formulas are constructed are: 

(9)     Improper symbols 

punctual ion marks 

logical  symbols 

primitive constants T and F* 

(b) Constants 

n-adlc function constants f I   t' ^ '' n ^ 

[f0 are caI led  |pdlvidual  constants], 

n-adlc predicate constants P,   <' £    ' n ^ 

[p0 are called prepositional  constants]. 

(c) Variables 

Individual variables xi       2 

n-adlc predicate variables q^  (i i I, n ^ 0) 

i    -^ ^.iiaH nroDDsltlonal variables] [q0 are called proposltlonal variables]. 

m the following, we shall  use also y, as Individual  variables 
and a. as  Individual constants. 



The subscripts and the superscripts will be omitted whenever their 

omission can cause no confusion. 

Among all the expressions which can be formed using these symbols, 

we distinguish three classes which are defined recursively as follows: 

(a) Terms 

1. Each  Individual variable Xj and each   Individual  constant f0. 

is a term; 

2. If t|»+2'""+
n  

(n i " are +erms, then so  Is f"(t(,t2,...ft ); 

3. The terms consist exactly of the expressions generated by  I 

and 2. 

(b) Atomic formulas 

I.    T, F, Pj and q° are atomic formulas. 

2«     If *\,*2""'*n  ^n <* " are +enns' *h*n the expressions 

P|<+|.t2,.,,,tn) and q^Ctj,^,,,.,^) are atomic formulas. 

3.    The atomic formulas consist exactly of the expressions 

generated by  I and 2. 

(c) Wei I-formed formulas (wff's) 

1. An atomic formula   Is a wff. 

2. If R Is a wff, then so are ~R,  (x^R [x    Is said to be 

universal iv quantified], and Ox^R [x    is said to be 

exlstentlaily quantified]. 

3. if R and S are wtfs, then so are (R =) S),   <R A S),   (R V S), 

and  (R ■ S). 



4,    The wff's consist exactly of the expressions generated by  I, 

2, and 3. 

Parentheses will be omitted whenever their omission can cause no 

confusion. 

An occurrence of x.   In a wff R  Is a bound occurrence   if  it  Is  In 

a wf-part of R of the form  (x^S or  (ax.)S.    An occurrence of x.  which 

Is not bound   Is called a free occurrence,    x.  Is free in R  if  it has 

at  least one free occurrence  in R.    R  is closed if   It has no free 

Individual  variables. 

Our next step Is to single out from the class of wff's those which 

are  logical ly val Id.    This can be done either by specifying axioms and 

rules of   Interference or by referring to  "interpretations" of the wff's 

of the system, and by a basic result due to Gödel   (GBdel  Oompleteness 

Theorein)  both of these procedures will   lead to the same  ;lass of 

formulas.    For our present purposes  it  is most convenient to use the 

latter formulation employing "interpretation". 

An   interpretation .^ for a wff W consists of a  non-empty set of 

elements D    (called the domain of the   Interpretation) and assignments 

to the constants of W: 



1. To each function constant f1? which occurs  in W, we assign a 

totai  function of n variables ranging over D-, whose vaiues 
o 

are  in D..    [if n = 0, the  Individual  constant f? Is assigned 

some flxod element of D..] 

2. To each predicate constant p1? which occurs  in W, we assign a 

totai  function of n variables ranging over D , whose values 
o 

are T or F.    [if n = 0. the propositlonal  constant p.   is 

assigned the value T or F.] 

Given a wff W and an  Interpretation 3 for W [notation:    (W,^)]. 

An assignment T for  (W,^)  consists of assignments to the variables 

of Ws 

i.    To each free   individual variable x.   in W, we assign some 

fixed element of D-. 

2.    To each predicate variable q? which occurs   In W, we assign a 

total  function of n variables ranging over D  , whose values 
o 

are T or F. [if n = 0, the propositlonal variable q. is 

assigned the value T or F.] 

Let W be a wff. Then given an int .'■pretation 3 for W and an 

assignment r for (W,3) [notation: (W,3,r)], a value T or F will be 

assigned to (W,3,n. This value is obtained simply by using the 

assignments of 3 and T, Interpreting F as falsehood and T as truth, 



using the usual truth tables of ~, A, V, z>,  and a, and interpreting 

the universally and existentially quantified variables in the standard 

way. 

(W,3)   Is said to be: 

1. valid,   if for every assignment T,   (W.g.D has the value T. 

2. satisflable (or consistent),   if  (W,3,r) has the value T for some 

assignment T. 

3. unsatisfiabie.   if  it  is not satisfiable. 

Clearly,   (W,3)   is valid  if and only  if  M^g)   is unsatisf Iabie. 

A wff W  is said to be: 

1. val Id.   if  for every   Interpretation 3,  (W,3)   is valid. 

2. satisfiable  (or consistent).   If  (W,3)   is satisfiable  for some 

interpretation 3. 

3. unsatisfiabie.  if  it  is not satisfiable. 

Clearly, W is valid j_f and only  if ~W  is unsatisf iabie. 

A wff   is called quantifier  free   if   it contains no occurrence of 

or   (axj). 

A wff  is  In prenex    jrmaI   form,   if   it begins with a sequence of 

(x.) or (axj) 

quantifiers (x.) and Ox.) in which no variable occurs more than once 



(«.led the£relix), and  if the sequence  ,s fo/.o.ed by a „uant.f.er 

free wff  (called the matrl^K 

The disjunction of the wff «s R|,R2 nd ^ ^^^ ^ 

|      «2      ...  V Rn, their conjunction   Is the wff R, A R2 A  ... A R . 

A Uterai  Is a wff which   Is either an atonic formula or of the 

form~R, where R  is atomic-. 

A ikuss Is a disjunction R(  V ^ v ...  v Rn   in which each R, 

's a   literal and   in which no atomic formula occurs twice. 

A conjunction of clauses  is said to be a ^ Jn coniunctive 
normal  form. 

Let W be a wff   in prenex normal  form.    T^en its iuactional to 

Aiu Is defined as follows: 

Let the variables   in the orefl^ r,f u /1- _ J me prerix of W  (In order of occurrence)  be 

VX2'-"'V    Let the existential ly quantified variables  in the 

prefix be x     x ■* -n.      * 
i,'   i2 

XIM'    Then  for every j,   I < j < M: 

'.    the quant;fler  (gx^,   is to be deleted  from the prefix, and 

2.    each occurrence of x^   in the matrix of W  is to be replaced 

by an occurrence of the term f? (x^.x^ x, ), where 

(>V'   (xk_) (x
k >. <1^0, are all  the universal 

quantifiers that precede  Qx    )   ln the prefix of W and  f* 
j ' 
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Is the first q-adlc function constant which does not occur 

In W and has not been used previously  In this process. 

We shall use the following known result; 

W  \s satlsf lable  If and only   If  its functional   form  Is satisf lable. 



II 

1-2   JaSVaH^-Pro^ofl^Pj^^^ 

That  is, there can be no »Igorlth. which takes as  .„put any wff and  in 

-II cases tenninates with a decision as to whether the wff   is valid or 

not. 

But, the vanditr£r£Mem of the £r2acate.«icuius Js 

-ni-decidabie.    That  is.  there are algorithms,  caiied ^0.-^^ 

2-cedures. which take as   input any wff and:    (,)   If +he wff   [s va|id 

the algorith. will stop and say so;   (2)   if the wff  is not valid the 

algorithm will  never stop. 

The algorithms have undergone successive reductions so that by 

now they have a simpie structure.     |„ this work, we shali  use one 

-cent aigorithm based on the resolution ^rinci^ (Robinson [i965],. 

Though the val idity-probie. of the predicate-calculus   is undecidabie 

there neverthe.ess exist classes of wff-s for which the problem   is 

decidable.    For example, the validity-problem  is decidable for the 

following three classes:(l) 

'•    W,   =  iwlw  Is a wff   in prene^normaI  form, without function 

constants, and with prefix of the form V...va...aj, 

2. W2 =  iwlw  is a wff   in prenex-normai  form, without  function 

constants, and with prefix of the form V...V3V...VJ, 

3. W3 =  iwlw  is a wff   in prenex-normaI  form, without function 

constants, and with prefix of the form V...VHSV...VJ. 

See Ackermann [195411 or Church D95611 Section 46. 
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1.3   Directed Graphs 

A directed graph G Is an ordered triple <V,L,A> where: 

i.    V Is a non-empty set of elements called the vertices of 6; 

2. L  Is a non-empty set of elements called the  labels of G; and 

3. A  Is a set of ordered triples (Vjjt.v*), where vtV, v'eV, 

and icL.    These triples are called the arcs of G. 

If V and L are finite sets, G is called a finite directed graph. 

Let a = ^v,l,v,)  be an arc of a directed graph.    Then, we define; 

1. v   - the  Initial vertex of the arc, 

2. i   - the  label of the arc, 

3. v' - the terminal  vertex of the arc. 

And we sha 11  say that the arc a  leads from the vertex v is. ^e 

vertex v'. 

Let v be a vertex of a directed graph.    Then, 

1. The number  (finite or  infinite) of arcs a, aeA, s.t.  v  is the 

initial vertex of a  is called the out-degree of v. 

2. The number  (finite or  infinite)   of arcs a, otft, s.t. v  Is the 

terminal vertex of a is called the  ln-degree of v. 
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A finite path of a graph G (path, for short)  Is a finite sequence 

of n arcs of G, n j; I, 

(Vj   .1.   ,v.  ),   (v    ,i.  ,v    ),   ...   .(v.  ,t.   ,v.    ' ), 
'l     'l     '2 '2    '2     '3 'n    'n    'n+l 

s.t.  the terminal vertex of each arc coincides with the  Initial vertex 

of the succeeding arcs. 

We say that the vertices v.   ,v.   ,...,v.        are QH the path, and 
'l     '2 n+l 

that the path .joins the vertices v.    and v. 
'l 'n+l 



"»I»» ■»■ n«,.. .. 
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CHAPTER 2:    DEFINITIONS 

2.1    Abstract Programs 

An abstract ^roaram (or program schema) AP consists of: 

I.    A finite directed graph <V,L,A>. with 

(a) exactly one vertex S.V with   in-degree 0 (i.e., no arcs  leading 

to S),  called the start vertex: 

(b) exactly one vertex H.V with out-degree 0 (i.e.,  no arcs 

leading  from H), called the ;,alt vertex: and 

(c) every vertex v.V  is on some path that joins S and H. 

2.      (a) a set of m, m ^ 0, distinct   individual variables 

V =  (VV2.'..,ym),  called   input variables: and 

(b) a set of n,  n> I, distinct   individual  variables 

x=  (x|,x2,...,xn),  called program variables. 

3.    With each arc o, =  (v,i,v<)eA there   is associated: 

(a) a quantifier free wff ^ called the test predicate of ■>: and 

(b) an n-tuple 7   = (t(a)    +la) +<<*),    x .. 
a      lT|     ' T2    '•••'+n     ' of terms called the 

assignment  function of a.C'' 

The wff ^ does not contain any predicate variables. 

The  Intended   interpretation   is 

v:     If <fa then [replace simultaneously each variable x    bv t^ 

go to v'J. 
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The wff 9a and the terms i1** do not contain   Individual  variables 

other than^and x.(l)     If v = S (I.e., « Is an arc  leading from the 

start vertex) the wff ^ and the terms t" do not contain the program 

variables 7. 

In addition, an abstract program should satisfy the following 

restriction: 

4.     For every vertex v(v ^ H),   if or,,^ ^  is the set of all arcs 

leading from v, the set of the test predicates cp    .m    ,....»      Is 

(a) complete,   i.e.,   (x)(y)  U     y cp      V  ... V «p    ]   Is valid, and 

- N 

(b) mutually exclusive.   I.e.,   (3x)(ay)  U     A «pi   is unsatlsfiabU 
Or. Or . 

for every pair  (I,j),   | ^ i ^ j ^ N# 
J 

We have restricted <pa to be a quantifier  free wff.    However, all 

the theorems presented   in this work are true also  in the case when cp 

is anyjm that does not contain free  individual  variables other than 
y and x. 
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Example 

The following diagram represents an abstract program. We shall 

refer later to this abstract program as AP*. 

x ■«- f(x) 

where 

a - Individual constant, 

f - monadic function constant, 

p - monadic predicate constant, 

y - input variable, 

x - program variable. 



17 

2.2    Programs 

An  Interpretation 3 o\ an abstract program AP consists of a 

non-empty set of elements 0^ (caI led the domain of the  Interpretation) 

and assignments to the constants of AP: 

I.    To each function constant f" which occurs  In AP, we assign a 

latal function of n variables ranging over D , whose values 

are in D^.    [if n = 0, the Individual constant f"  is assigned 

some fixed element of D  .] 
o 

2.    To each predicate constant p" which occurs  In AP, we assign a 

iStSl function of n variables ranging over D , whose values 
o 

are T or F.    [if n = 0, the propositlonal  constant p° is 

assigned the value T or F.] 

Let AP be an abstract program and 3 an  Interpretation of AP.    The 

pair  (AP,3)   is called a program. 

Example 

Consider the abstract program AP» of sec. 2.1. Let 3« be the 

following Interpretation of AP»: 

D Is I (the domain of the Integers), 

f(x) Is x + I, 

p(x) is x = 0, and 

a is -I. 
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Then the program (AP*,3*) can be represented by the diagram: 

In order to give a rough  Idea of what will  follow  in the next 

section,   let us only mention that the Algol meaning of this diagram  is: 

START: if v=0 then Cx •*• v:    go to 3]  else [x •'- -I;  go to  l]; 

I: If x=0 then Cx *■ x;    go to 3]  e I se [ x •*- x ■*•  I; go to 2]; 

2: If x^O then Tx * -I: JO to 3] else [x * x; HALT]; 

3: If xO then [x *■ x;    HALT] eIse [x ■»- x + I; CJQ to 3]. 
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2.3    Interpreted Programs 

Let  (AP,3) be a program.    Then tho result obtained by assigning 

values Y* Y*'D«'   »  ^or ^e  Input variables y of the program -  is called 
o 

the  interpreted program  (AP^/y). 

Example 

By assigning the value   I  to the  input variable y of the program 

CAP»,3») of sec.  2.2, we obtain the  interpreted program  (AP*,3*,I): 

Programs with no input variables (i.e., m = 0)  will  be considered 
as   interpreted programs. 
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The Interpreted program (AP,3,Y) defines an execution sequence 

<AP,a,V> which is a (finite or Infinite) sequence of triples 

a(,).v(l).x("), U(2>,v(2)^2>,. U(3'(v
(3),x<3))(. 

where. 

1. U(J),v<j),x(J))e L x V x (D )n for every j,j z  '• 

2. (4{l),v('),l<(')) is the first triple in the sequence if and 

only if there exists an arc a =  (S,jt  ,v  )eA s.t. 

cpa(7) = T  and  x(l) = ta(v).
(l) 

3. U1^,^^) and  (Jt
(j+l),v(J+l),x(j+l)) are two successive 

triples  in the sequence   If and only  If there exists an arc 

*= (v'-iVJ+'V-i+^.A s.t. 

^(x^'T     and     lV+l)  -l^.y).™ 

4. The sequence is finite and (jt(q),v(q) ,x(q)), q 2: I» Is the 

last triple of the sequence if and only if v q = H.  In 

<p (y) and t (y)  stand for the result of substituting y for y in 

<o and t . Ya    or 

2«p (x^'.Y) and t  (x^'.y)  stand  for the result of substituting 

x "'    for x and y t°r Y  'n fa 
and ^a' 
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this case x q    is called the value of the execution sequence 

<AP»3»Y> and   is denoted by val ^P,^,^»  , 

In other words,  execution always starts at the start vertex.    On 

execution of the j      step,  j i I, control moves along the arc 

a = (v J      ,jt J   ,v J  ), where v        = S, and 9    represents the condition 

that this arc  is entered.    The value of each program variable x.   Is 

replaced  in the j      step by the current value of f.a\  simultaneously. 

So, x        represents the current value of the program variables x after 

executing the j      step.    Execution stops whenever control reaches the 

halt vertex. 

Example 

The  interpreted program  (AP#,3*,i)  defines the following execution 

sequence <AP*,5*,I>: 

(I, I,-I), (3,2,0), (5,3,-1), (7,3,0), (8^,0). 

Let  (AP,3,Y)  be an  interpreted program, and   let vsV be any vertex 

of AP.    Let 6 be a specified total  predicate from  (D^)"   into lT,Fj. 

Then, 

1.    6  i s ca 11 ed a valid predicate of v for   (AP^y) 

if 
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V5,  5c (D )   :   J_f there exists a triple of the form  (J^V,?) 

in <AP,3,Y>,   for some jleL, then 6(5)  = T. 

2.    6   is called the minimal valid predicate of v for  (AP,3,v) 

if 

V?,  5« (0 )":    6(?)  = T JJ_ and onlj^ J_f there exists a triple 

of the form  (jt,v,|)   in <AP,3,Y>,  for  some jtsL. 

Example 

The predicate x< 0  is a valid predicate, while the predicate 

x = -I   is the minimal  valid  predicate, of the vertex  I   for the 

interpreted program (AP*,3*,I). 



BLANK PAGE 
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CHAPTER 3:    TERMINATION OF PROGRAMS AND ABSTRACT PROGRAMS 

3.1    The Algorithm to Construct W.» 

In this section we shall  describe an algorithm to construct from 

a given abstract program AP a wff W.p, called the wff of AP.     In 

section 3.3 we shall   state results about the relation between AP 

and WAp. 

AI gor i thm  I 

Let AP be any abstract program with program variables 

x = (x. .x-,... ,x ), n > I, and input variables (y.,y7,...,y ), m>0. 

We shall construct the wff W.p in three steps: 

Step I 

Associate with every vertex v. of AP a predicate variable q., 

where the q.'s are distinct n-adic predicate variables. 

Step 2 

Let a  = (v.,i.v.) be any arc of AP. 

In step I we have associated with the vertex v. the predicate 

variable q., and with the vertex v. the predicate variable q.. 

We shall define the wff W (the wff of the arc a)  as 
a 



24 

But. 

1. ^ v| = S (i.e., v. is the start vertex of AP), then replace 

the occurrence of q,(x) in W by T, and 
i      a 

2. if v. = H (i.e., v. is the halt vertex of AP), then replace 

the occurrence of q.(t ) In W by F. 
J a    Of ' 

Step 3 

Let a|,a2,.. .,aN be the set of al I  the arcs of AP.     Then define 

WAp  (the wff of AP) as: 

(x)[W     AW     A   ... A W    ] 
a,      a2 aN 

(I) 

Note that the input variables y are free variables in WA_. 
Ar 
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The wff W.D, of the abstract program AP« of sec.  2.1 will  be 

obtained as follows: 

Combining steps  I  and 2 we obtain 

~p(v)      CD      x »a    f  , 

p(y) 

x * f(x) 

(3) 

~p(x) 

P(x) 

x ■»- y 

(4) 

s~p(x) 

p(x) 

(5) 

(6) 

-fCx) 

~p(x) x * f(x) 

W.:        T     A ~P<y)  = V' 

W2:        T     A    p(y) => qj'y) 

W,: q^x) A ~p(x) r> q2(f(x)) 

W4: q^x)  A    p(x) 3 q3(x) 

W.: q2(x) A    p(x) ^qjfa) 

W6: q2(x)  A~p(x)  ^ F 

(7) 
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W7:    q3(x) A ~p(x) => q3(f(x)) 

W8:     q3(x) A     pM => F 

Then by  step 3 It follows that, 

WAP»:     M^\  A  W2 A  W3 A W4 A  W5 A  W6 A  W7 A  Wg] 



27 

3.2    Termination of Programs 

Deflnl+lon  I 

The program (AP.J)  Is said to terminate If Vv. Y«'0»5   »  +he 

execution  sequence <AP ,3,Y>  IS finite. 

We are ready now to state the main result of this chapter. 

Theorem  I 

The program (AP,3) terminates 

If and only if 

(WAp,3) is unsatlsflable [or equlvalently, (~WAp,3) Is valid]. 

Proof 

We shall  prove that the program  (AP^)  does not terminate if and 

only  If   (WAp,3)   Is satlsfiable. 

I.     (AP,3)  does not terminate =»   (WAp,3)   is sati sf iab ie. 

If the program (AP,3)  does not terminate, there exists a 

y, Y«(D-)m,   such that the execution sequence <AP,3,Y>  is  infinite. 

Let us assign to each predicate variable q,   in WAp,  the minimal 

valid predicate of the vertex v.   for the  Interpreted program  (AP,3,Y). 

Note that since the execution sequence <AP ,3,Y>  is  Infinite,   I.e., 

control   never reaches the halt vertex,   it follows that the predicate F 

is the minimal  valid predicate of the vertex H for the interpreted 

program  (AP,3,Y). 



28 

Let T consist of the above assignments for the q.'s and with y 

assigned to y. Following the construction of W,- (see Algorithm I), 

it is clear that the value of (WAp,3,r) is T, i.e., (WAp,3) Is 

satisflable^and this completes the proof In one direction. 

2-  (W
AP»3' 

is satisfiable =» (AP,3) does not terminate. 

If <wAp.3) 's satlsfiable. It means that there exists an 

assignment T  for (WAp,3) such that the value of (WAp,3,r) i s T, T 

consists of assignments of specified total predicates 6., mapping 

(D )  into lT,Fi, for the predicate variables q., and an assignment 

Y» Y«^«*^ » for +he ^ree variables y. 

By the construction of WAp (see Algorithm I), this implies that 

each fij is a valid predicate of the vertex v. for (AP,3,Y), and 

therefore that F is a valid predicate of the halt vertex for (AP^y). 

This implies that the execution sequence <AP,3,y> is Infinite 

(i.e., execution does not reach the halt vertex).  So, (AP,3) does not 

terminate. 

q.e.d. 
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Let us consider the program (A^,^» «here 

I.    the abstract program ÄP  Is 

oy- x ■«- y 

~p(x) 

p(x) 

lx + f(x) 

<D 

and 

2.    the   interpretation ^ is 

D^ =  I    (i.e., the domain of the non-negative  integers), 

p(x)   Is x = 0, and 

f(x)   is x -  I, where x ^  I   Is defined as {x"'   !^ ^ > ° 
^ 0  if x = 0. 

The program (A'?,'}) can be represented by the domain D^ = I and 

the d lagram 

ay- 
x i« 0 

x = 0 -0 
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Using Algorithm  I  we can construct W.-g,  which  Is 
Or 

(x>l    [TAT     oyyj] 

A [qjfx) A~P(x) => q^fix))] 

A tqjCx) A     p(x) o      F ]J. 

The pair  (W^)  can be represented by the docnain C^ = I+ and 
o 

^'     (x)l    [TAT     =.q|(y)] 

A [q, (X) A  x ^ 03 q  (x i   |)] 

A[q(x)Ax=0o   F    ]J. 

We shall   prove that the program  (Ap.g)  terminates by using 

Theorem  I,   i.e.,  by proving that (W^jf) unsatisf lab le. 

We shall  use the first order theory N,  which formalizes elementary 

number theory.    We assume that the reader  is familiar with this theory0'. 

The theorems of  N that we shall  use are: 

Tl:      Gx^q^x,)^  Sx2)[q|(x2)A   ^ [X3 <  x2 3-q, (x3) ]] 

(an instance of  the Least-number Principle),  and 

T2:     (x)[x ^ 0 =) x ■1   I < x]. 

Thus,   in order to prove that  (WA~3)   is unsati sf iable,  we shall 

prove that ^ *  T, A  ^  is unsatisfiable (considerinp x = 0, x < y 

and x -   I  just as symbols,   i.e., the predicates x = 0 and x < y 

as predicate constants and the function x ^  I  as function constant). 

Kleen^Kr^cJlon^^^" 8' ^^  [,964] C^ 3'  - 
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Ttie Proof: 

The prenex normal  form of \«N   A T. A T_  is: 
AP 

ax2)(x|)(x3)(x)l q^y) 

A [q^x)    A  x / 0   3    q^x -   I)] 

A [q^x)    A x  = 0   3    F] 

A [q.(x.) r> [q. (x,) A   [x, < x, =>~q. (x   )]]] "r 2 3"  -2- ^|-3' 

A   [x )< 0    Z) x-   I    <    x]J, 

Then by changing the matrix to conjuctive normal form and 

replacing x_ by a and y by b (a and b are individual variables), we 

obtain the wff W»: 

(x|)(x3)(x)l    q,(b) 

A t-q 

A f-q 

A hq 

A Ir-q 

A [x = 0 

(x)  V x = 0  V q^x ■1 I)] 

(x)  V x )< 0] 

(x^ V q^a)] 

(x^ V x3 < a V ~q|(x3)] 

V x - I < x]}. 

Clearly. W^ A T, A T_ is satisfiable if and only I f W» is 
    XP   I   2 

sat i sf I ab I e. 

We are going to prove that W*   is unsatisfiable by using the 

resolution principle.    We assume that the reader  is familiar with this 

technique  (see Robinson  [1965]). 

The  Ii st of clauses is: 

I.       q^b) 

~q. (x), x = 0,   q.(x -   I) 
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3. ~q|(x) ,  x  t 0 

4. -qjCx!), q^a) 

5. ~<\i (x^,  x3 V a, ~q|(x3) 

6. x = 0 , x - I < x. 

Then by resolving we obtain: 

7- ^i(a) by I and 4 (x. = b) 

8- a <* 0 by 3 (x = a) and 7 

9- q|(a " l) by 2 (x = a), 7 and 8 

10.  a - I < a by 6 (x = a) and 8 

I'- ~q|(a- I) by 5 (x, = a, x3 = a - I), 7 and 10 

12-  /_/ by 9 and II 

So, by resolving, we inferred the empty clause/T, which implies 

that W» is unsatisfiable, i.e., (W^^f) is unsatisflable. Therefore 

it follows, by Theorem I, that the program (XP^) terminates. 
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3.3 Termination of Abstract Programs 

Definition 2 

An abstract program AP is said to terminate If for every 

Interpretations, the program (AP,3) terminates. 

The following theorem follows from Theorem I and Definition 2. 

Theorem 2 

An abstract program AP terminates 

I f and only If 

WAp is unsatisfiable [or equivalently, ~WAp is valid]. 

Proof 

AP terminates, 

if and only if (follows by Definition 2) 

for every interpretation 3, the program (AP,3) terminates, 

if and only if (follows by Theorem I) 

for every interpretations, (WAp,3) is unsatisfiable, 

i f and only if 

W.p i s unsatisfiable. 
q.e.d. 

Theorem 2 transforms completely the problem of termination of 

abstract programs to an equivalent problem in logic.  This enables us 

to obtain many results about the problem of termination of abstract 

programs, just by using well-known results in logic.  The following 

example illustrates one of them. Other results are presented in the 

next section. 



34 

Example 

We shall   prove that the abstract program AP*  (see sec.  2.1) 

terminates,  by using Theorem 2,   i.e.,  by proving that W.^   is 
Ar* 

unsatisfiable. 

In sec. 3.1 we have already constructed WAp>, which is 

(x)i [ T  A~p(y) => q^a)   ] 

A [  T  A p(y) =>  q3(y)   ] 

A [q^x) A ~p(x) 3 q2(f(x))] 

A [q^x) A p(x) 3 q3(x)   ] 

A [q2(x) A p(x) 3 q3(a)   ] 

A [q2(x) A ~p(x) 3 F      ] 

A [q3(x) A ~p(x) 3 q3(f(x))] 

A [q3(x) A p(x) 3 F      ]j. 

By changing the matrix of W^ to conjuctive normal   form,  and 

replacing y by b  (where b  is a new  individual  variable),  we obtain 

"AP*- 

(x)l      [ p(&,   V q^a) ] 

A   [ ~p(b)   V q3(b) ] 

A [-^(x)  V    p(x) V q2(f(x))] 

A [-MI^X)   V ~p(x) V q3(x)       ] 

A [~q2(x)  V ~p(x) V q   (a)       ] 

A [~q2(x)  V    p(x) ] 
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A [~q3(x) V p(x) V q3(f(x))] 

A [~q3(x) V~p(x) ]]. 

Clearly, W'  is satlsfiable if and only if WAp# is is sa+isfiable. 

We are going to prove that W'  is unsatisfiable by using the 

resolution principle. We assume that the reader is familiar with this 

technique (see Robinson [1965]). 

The list of clauses is: 

1. p(b), q^a) 

2. ~p(b), q3(b) 

3. -q! (x),  p(x), q2(f (x)) 

4. ~q| (x), ~p(x), q3(x) 

5. ~<i2(x), ~p(x), q3(a) 

6. ~q (x),  p(x) 

7. ~q3(x),  p(x), q3(f(x)) 

8. '^3(x), ~p(x). 

Then by resolving we obtain 

9.  ~p(b) by 2 & 8 (with x = b) 

10. q^a) by I i 9 

11. -^^x),  q2(f(x)), q3(x)    by 3 & 4 

12. q2(f(a)), q3(a) by 10 i II (with x = a) 

13. ~q2(x), q3(a) by 5 i 6 
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14. q^a) by 12 4 13 (wj+h x = f(a)) 

15. ^(x), q3(f(x)) by 7 i 8 

l6- ^3^(8)) by 14 4 15 (wi+h x = a) 

17. p(a), q2{f(a)) by 3 (with x = a) 4 10 

18. p(a),  p(f(a)) by 6 (with x = f(a)) i 17 

19. ~q3(a),  p(f(a)) by 8 (with x = a) i 18 

20. ~q3(a), ~q3(f(a)) by 8 (with x = f(a)) i 19 

21. ~q3(a) by 16 i 20 

22- L./ by 14 4 21. 

So, by resoiving, we inferred the empty clause /_/, which implies 

that W^ Is unsatisfiable, i.e., WAp)t is unsatl sf iable. Therefore it 

follows, by Theorem 2, that AP» terminates. 



37 

3.4    The Termination Problem of Abstract Programs 

It is a we I I-known resu11 that the termination Problem of 

abstract programs is undecidabie (see Luckham, Park and Peterson 

[1967]).    That  is, there can be no algorithm which takes as  input 

any abstract program AP and  in all  cases stops with a decision as to 

whether the abstract program terminates or not. 

But, 

Corollary   1:    The termination prob I em of_ abstract programs j_s 

semi-dec!dab Ie. 

That  is,  there are algorithms  (called semi-decision procedures), 

which take as  input any abstract program AP,  and 

1. If AP terminates, the algorithm will   stop and say  so; 

2. If AP does not terminate,  the algorithm will  never stop. 

Since the validity problem of the predicate calculus  is semi- 

decidable. Corollary   I   follows directly by Theorem 2. 

Moreover,  any known semi-decision procedure for solving the 

validity problem of the predicate calculus can be used, together with 

Algorithm  I, as a semi-decision procedure for  solving the termination 

problem of abstract programs.     In fact,   in sec.  3.3, we have used the 

resolution principle, which  is a semi-decision procedure for solving 
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the validity problem of the predicate calculus,  to prove the 

termination of the abstract program AP» of  sec.  2.1. 

Though the termination problem of abstract programs  is 

undecidable, there nevertheless exist subclasses of aostract programs 

for which the termination problem is decidable. 

Corollary 2 

The termination problem for the follow Inq classes is dacidable: 

1. C| = IAPIAP is an abstract program without function 

constants f", n > Ij, 

2. C_ = IAPIAP is an abstract program which has only one program 

variable x (i.e., n = I), and all the occurrences of 

function constants in AP are in terms of the form f? 
i 

or f!(x)i. 

3. C = [APIAP is an abstract program which has only two program 

variables x. and x. (i.e., n = 2), and all the 

occurrences of function constants in AP are in terms 

f°orf2(VX2) of the form f? or f?(x.,x )J. 

Proof 

For each i, I ^ ' < ^» +he decidability of the termination problem 

for the class C. follows, by using Theorem 2, from the decidability of 

the validity problem for the class W. (see sec. 1.2). 
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Let us prove this assertion for I = 2, i.e., we shal I prove the 

decidability of the termination problem for the class C- by using 

Theorem 2 and the decidability of the validity problem for the doss 

W-, where 

W2 = iwlw is a wff in prenex normal form, without function 

constants, and with prefix of the form V.. .VSV... vj. 

The proof of the assertion for the other classes is similar. 

Let AP be any member of the class C2, i.e., AP Is an abstract 

program which has only one program variable x (i.e., n = I), and all 

the occurrences of function constants in AP are in terms of the form 

f°'f2'---'fk and f](xM2(x)'---'f,i(x) (k'lZ 0)- 

Then WAp is of the form (x)M, where M is a quantifier free wff 

and all the occurrences of function constants in M are in terms of the 

form f°'f2 fk0 and f|(*M2(><).--..fj(x). 

Let W^p be the wff Ow,)... (3^ ) (x) (3z,)... (3z JM1, where M1 

is the result of substituting w., i = l,2,...,k, for each occurrence 

of f. in M and substituting z., i = l,2,...,i, for each occurrence of 

f.(x) in M, i.e., M1 contains no function constants. 

W^p Is satisfiable if and only If W.  is satisfiable, since W.D is 

the functional form of WJ„. 
AP 
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Let WJJp be the wff   (w  )... (wk) Ox) (z,)... (Zj) [~M'],   i.e., W^p Is 

just~W'   .    Clearly, W"     Is valid  if and only  If W'     Is unsatisfiable. 

Since KV- Is  In prenex normal   form,  without function constants, 

and with prefix of the form V...yäV...V,   It follows that W^, is a 

member of W-.    But the validity problem for the class W_   Is dec I dab Ie, 

so  it  is decidab Ie whether W"     is valid or not. AP 

Since by the previous assertions W"p is valid If and only if AP 

terminates, this Implies that it is decldable whether AP terminates or 

not. 

q.e.d. 

Known decision procedures for solving the validity problem for 

the class W. can be used, together with Algorithm I, as a decision 

procedure for solving the termination problem for the class C.. For 

example, we can use Friedman's semi-decision procedure for the 

predicate calculus (see Friedman [1963]), which Is n decision procedure 

for the classes W., VL, and W,. 

Note that the abstract program AP* of sec. 2.1 belongs to the 

class C_. 
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CHAPTER 4:     EQUIVALENCE OF PROGRAMS AND ABSTRACT PROGRAMS 

4.1    The Algorithm to Construct W^p Ap, 

Definition 3 

Two abstract programs AP and AP' are said to be comparable it 

1. they have the same set of  program variables x = (x|,...,xn), 

and 

2. they have the same set of   input variables y = ly|,...,ym). 

In this section we shall  first describe an algorithm to construct 

from two given comparable abstract programs AP and AP', a wff W^p ^p, 

(the wff of AP and AP').     In section 4.3 we shalI   state results about 

the relation between AP, AP' and WAp ^p,. 

AI gor i thm 2 

Let AP and AP'  be any two compaiable abstract programs.    We shall 

construct the wff W^p Ap,   in four  steps: 

Note that any two abstract programs can be considered as 
satisfying condition 2,  for  if the two abstract programs do not have 
the same sets of   input variables,   just add to each program an 
appropriate set of  dummy  input variables. 
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Step I 

Associate with every vertex Vj of AP a predicate variable qj [we 

shall denote by q^ the predicate variable associated with the halt 

vertex H of AP], and associate with every vertex vj of AP' a predicate 

variable qj, where all the q. and the qj are distinct. 

Step 2 

Let a =  (v.,i,v.) be any arc of AP. 

In step I we have associated with the vertex Vj the predicate 

variable q., and with the vertex v. the predicate variable q.. 
i J J 

We shall define the wff W^ (the wff of the arc a)  as 

fiul, 

if v. = S (i.e., v. is the start vertex of AP), then replace the 
i i 

occurrence of q,(x) In W^ by T. 

Step 3 

Let cr' = (v'.,l,v'.)  be any arc of AP'. 

In step I we have associated with the vertex vj the predicate 

variable q.', and with the vertex v'. the predicate variable q'.. 
i J J 

We shall define the wff W^, (the wff of the arc or') as 

V  "i'*5 A V3 qj(V- 

Sal. 
I.  if v! = S' (i .e., v.' is the start vertex of AP1), then 

replace the occurrence of qf(x) In W^, by T, and 
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2.     if V. = H'   (i.e.,  vj   Is the halt vertex of AP'),  then 

replace the occurrence of q'(t  ,)   in W  .  by ~q1,(t  .). 
j   a a'    nH or 

Lefal02,...,QN  be the set of all the arcs of AP, and 

a\'a2'---'aM  be the se+ of al1 ^e arcs of AP'. Then define W 

as 
AP.AP' 

WAP,AP'!     (x,[W
a|
A  W

a2
A   ••■A Wa    A  W^.A  WaIA   ...A  W^.]. (I) 

Example 

Consider the abstract program AP**: 

(I) ~p(y) A ~p(al x t-f(a) 

where, 

a - individual variable, 

f - monadic function constant, 

p - monadic predicate constant, 

y - input variable, 

x - program variable. 

in W 
Note that the input variables of AP and AP' are free variables 

AP.AP'• 
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Using Algorithm 2 we shall   construct the wff WAp# Ap##. where AP* 

Is the abstract program that was presented   In sec. 2.1. 

~p(y)       (I)       x  ♦< 

pty) 

x  * HxK 

(3). 

~p(x) 

)(x) 

M) 

x •<- y 

sof>(x) 

p(x) 

(5) 

J6) 

(8) 

"pU) 

— q. 

~p(xM x ♦■ fU) 

(7) 
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WAP»,AP*»:     Mi       f    T A ~p(y) 13 q^a)] 

A  [    T A    p(y) 3 q3(y)] 

A  [q^x) A ~p:x) n q2(f(x))] 

A   [qjtx) A    p(x) 3 q3(x)] 

A   [q2(x) A    p(x) 3 q-ta)] 

A   [q?(x)  A ~p(x)  => qu(x)] 
r 

A  [q3{x) A ~p(x) 3 q3{f(x))] 

A  [q3(x)  A    p(x)  3 qH(x)] 

A  [    T     A ~p(y) A ^(a) 3~qH(f(a))] 

A [    T      A~p(y) A    p(a) r)~q  (a)] 

A  [     T      A    p(y)  D-qH(y)]}. 
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4.2 Equivalence of Programs 

Definition 4 

Let AP and AP' be any two comparable abstract programs. 

Let 3 be an interpretation that contains assignments for all the 

constants that occur in AP or AP'. 

Then the programs (AP.J) and (AP',3) are said to be comparable. 

Definition 5 

Two comparable programs (AP.g) and (AP'.g) are said to be 

equivalent, i f 

Vy, Y«(CL)m, b0+h execution sequences <AP,3,Y> and 

<APl,3,Y> are finite and val <AP.3,Y> = val <AP,
,3,Y>. 

Theorem 3 

Two comparable programs (AP.g) and  (AP1^)  are equivalent, 

i f and only   if 

(W      AD1,3)   is unsatisflable [or equivalently,   ^WAP^AP"^'   IS 

va I id]. 

Proof 

We shaI I prove that: 

ay", Y«(Dcv)m' such +ha+ '■ <AP'3'Y> is infini+e' 

or 2. <AP
,
,3,Y> is infinite, 

or 3.  both <AP,3,7> and <AP,,3,Y> are finite, 

and val <AP,3,Y> I* val <AP,,3,Y>, 
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if and only If 

(WAP AP"^' is satisfiable. 

(i) =» 

We have to consider three cases: 

I.  If the execution sequence <AP,a,7> is infinite, then (W.D .D,,3) 
AP,AP 

is satisfiable,  since the value of   (WAp>Apl ,3,r)   Is T, where T consists 

of the following assignments: 

(a) Y assigned to y, 

(b) to each occurrence of q. in WAp Ap, assign the minimal valid 

predicate of v. for (AP,3,Y), and 

(c) to each occurrence of q.' In WAp Apl assign the minimal valid 

predicate of v.' for (AP'.g.y). 

The result then follows from the construction of W,„ , , 
APjAP' 

(Algorithm 2).    Note that,  since <AP,3,Y>  is  infinite,  the minimal 

valid predicate of H for  (AP,3,Y)   is F,   i.e.,  by our assignment 

qH 
s F, and therefore ~q    s T, 

2.     If  the execution sequence <AP• ,3,v> is   infinite,  then   (W.D .m,3) 

is satisfiable,  since the value of   (WAP(Apl,3,r)   is T,  where T consists 

of the following assignments: 

(a) v assigned to y, 

(b) to each occurrence of q. [except qH] in WAp Ap, assign the 

minimal valid predicate of v. for (AP,3,Y), 

(c) to each occurrence of q! In WAp Ap, assign the minimal valid 

predicate of v.' for (AP'^/y), and 

<d) qH 
a T. 
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The result then follows from the construction of W^, ^p, 

(Algorithm 2). Note thet ~qH ■ F, and s I nee <AP' ,3 ,Y> IS Infinite, 

F Is the minimal valid predicate of H1 for (AP'^.YK 

3.  If both the execution sequences <AP,3,Y> Bnd<APl,3,Y> are finite 

and val <AP,3,Y> *  val <AP,,3,Y> then (WAp Ap,,3) is satisf lable^slnce 

the value of (WAF1 ApM3.
r) 's T, where T consists of the following 

assignments: 

(a) Y assigned to y, 

(b) to each occurrence of qj in WAp Apl assign the minimal valid 

predicate of v. for (AP,3.V), and 

(c) to each occurrence of q.' in WAp Ap, assign the minimal valid 

predicate of vj for (AP'.S/y). 

The result then follows from the construction of WAp Apl 

(Algorithm 2). Note that we assigned to qH the minimal valid 

predicates of H for (AP^J/y), I.e., 6 (x) = T If and only if 

x = val <AP,3,Y>. Now, since val <AP,3,v> t  val <AP,4J,Y>, It follows 

that 6 (val <AP,4J,Y>) = F, i.e.,~6 (val <AP,45,^«) = T. 

(II)   «= 

We shall  prove that Jl (WAp ^,^5'   is satisfiable wi th f, Y« (l^)m, 

assigned to y, and both execution  sequences <AP ,3,Y> and<AP,4S,Y> 

are finite, then val <AP,3,Y> t vai <AP,^,Y>. 

If   (WAp Ap,.3)   is satisfiable with Y assigned to y,   it means 

that there exist an assignment T  such that  (WAp Ap,,3»r)   is T' where T 
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consists of the assignii.ant of y to y and assignments of specified 

total  predicates 6.  and 6!   (mapping  (D-)n   into lT,Fj)   for q.  and 
o 

q! respectively. 

By the construction of W.p .p,   (Algorithm 2), this implies that 

each 6.   is a valid predicate of the vertex v.   for  (AP,3,Y'. 

especially 6U Is a valid predicate of the halt vertex H for  (AP,3,Y'» 
H 

and therefore 6 (val <AP,3,Y» = T. Moreover, each 6; is a valid 
rl I 

predicate of the vertex v.'  for  (AP'^Y), and ~fiH is a valid predicate 

of the halt vertex H1   for  (AP'^/y),  and therefore ~6H(val <AP',3,Y>)  = T, 

i.e.. 6H(va| <AP,
)3,Y»  = F. 

But since 61J(val <AP,3,Y>)  = T,  while 6   (val <AP,,3,Y»  = F,   it n n 

follows that val <AP,3,Y> !* val <AP',3,Y>. 

q.e.d. 
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4.3    Equivalence of Abstract Programs 

Definition 6 

Two comparable abstract programs AP and AP'  are said to be 

equivalent  If for every  interpretation % that contains assignments 

for all  the constants that occur  in AP or AP', the programs  (AP.JJ) 

and   (AP'.g) are equivalent. 

Theorem 4 

Two comparable abstract programs AP and AP'  are equivalent, 

i f and only   if 

W/^p^pi   is unsatisf lable [or equi valently, ~W.p •□,   is valid]. 

Proof 

AP and AP1 are equivalent, 

if  and only   if   (by Definition 6) 

for every   interpretation 3,  the programs  (AP,3)  and   (AP'.J) are 

equivalent. 

If and only  if   (by Theorem 3) 

for every  interpretation 3,   (WAp Ap.,3)  unsatisfiable, 

i f and only   if 

w/\p /\pi   is unsatisf lable. 
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Theorem 4  transforms completely the equivalence problem of 

abstract programs to an equivalent problem  In   logic.     So,   by   Theorem 4 

we can obtain many results about the equivalence problem of abstract 

programs,   just by applying well-known results   in   logic.     In the 

remainder of  this section we shall  present several   such results. 

It  is a well-known result that 

the equivalence prob lern of abstract programs  i s undecidable. 

That   is,   there can be no algorithm which takes as   input any two 

comparable abstract programs and   in all   cases stops with a  decision 

as to whether  the abstract programs are equivalent or  not. 

This result follows directly from the undecidabi Iity of   the 

termination  problem of abstract programs  (see  sec.   3.4),   since an 

abstract program terminates   if and only   if   it   is equivalent to 

itself. 

But,   by  Theorem 4   it follows that 

Corollarv 3 

the equivalence problem of abstract programs  i s semi-deci dable. 

That   is,   there   is an algorithm   (called a  semi-decision  procedure), 

which takes as   input any two comparable abstract programs,   and 

1. if  they are equivalent,  the algorithm will   stop and   say  so, 

2. if   they are not equivalent,   the algorithm will   never   stop. 
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Since the validity problem of the predicate calculus Is seml- 

decidable. Corollary 3 follows directly by Theorem 4. Moreover, any 

knovn semi-dec I si on procedure for solving the validity problem of the 

predicate calculus can be used, together with Algorithm 2, as a semi- 

dec Is Ion procedure for solving the equivalence problem of abstract 

programs. 

Though the equivalence problem of abstract programs Is 

undecldable, there nevertheless exist subclasses of abstract programs 

for which the equivalence problem is dec I dab Ie. 

Corollarv 4 

The equivalence prob I em for the fol lowing classes j_s decidable; 

1. C| = IAPIAP is an abstract program without function constants 

f". n> 1], 

2. C2 = lAPiAP is an abstract program which has only one program 

variable x (i.e., n = I), and all the occurrences of 

function constants in AP are In terms of the form 

f°or f!(x)J, 

3. Cj = lAPiAP IS an abstract program which has only two program 

variables x. and x (I.e., n = 2), and all the 

occurrences of function constants in AP are In terms 

of the form f? or f.(x.,x2)i. 
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That is, for each 1, I < i < 3, there is an algorithm which takes 

as input any two comparable abstract programs AP, AP'tC., and in all 

cases stops with a decision as to whether AP and AP' are equivalent or 

not. This follows, by using Theorem 4, from the decidability of the 

validity problem for the class W. (sec. 1.2). 

Most of the results for the termination problem presented in 

Chapter 3 are special cases of the results presented in this chapter, 

especially corollaries I and 2 follows from corollaries 3 and 4 

respectively, since every abstract program AP terminates if and only 

if it is equivalent to itself. 

Sec the proof of Corollary 2 in cec. 3.4. 
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CHAPTER 5: TERMI NATI ON OF NON-DETERMINI STIC PROGRAMS 

AND NON-DETERMINISTIC ABSTRACT PROGRAMS 

5.1 Definitions 

A non-deterministic abstract programCp is defined exactly as an 

abstract program (see sec, 2.1), but without restriction 4(b), i.e., 

without the restriction that for every vertex v(v j* H), the test 

predicates on all the arcs leading from v are mutually exclusive. 

This implies that the class of all the non-deterministic abstract 

programs includes as a proper subclass the class of all the abstract 

programs. 

The notions of non-determInistic program CP,Jt) and non-determi ni stic 

interpreted program (GP^/y) are defined exactly as for abstract 

programs (see sections 2.2 and 2.3). 
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Examp I e 

The following diagram represents a non-deterministic abstract 

program.    We shall   later refer to it asCf»*: 

^SL IV>    ilL    * 

p(yT 

"^(x) 

x ■*- fM//      \\~p(x) 

<3)/ / \ XC7) 

Ap{f(x)) 

(2r 

vp(x) 

(5) 

x-«- a 

.(4) 

p(x) 

(6) 

^ 9) 

3 

~p(x) x  * f(x) 

where 

a -  individual constant, 

f - monadic function constant, 

p - monadic predicate constant, 

y -  input variable, 

x - program variable. 

(8) 
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Since the test predicates on all the arcs leading from vertex 2 

[I.e., ~p(x), p(x), and ~p(x) A p(f(x))], are not mutually exclusive 

GP*  is not an abstract program. 

Let 3* be the following  Interpretation of GP*: 

D is I   (the domain of the integers), 

f(x)   is x +  I, 

p(x)   Is x = 0,  and 

a  Is -2. 

Then the non-deterministic program (Gf*^*) can be represented by 

the domain D =  I and the diagram 
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By assigning the value  I to the variable   y of  CiJ>»,3*), we obtain 

the non-deterministic Interpreted program CP*^J», I): 

In a non-deterministic  Interpreted program CP^J/y) there may 

exist a vertex v and two distinct arcs a j and «„  leading from v,  such 

that control may reach vertex v with x = f, feCtl )",  whi le both 

<Pa   (?) = T and <p    (T)  = T.n) 

cpo   (5) and <ptf   (5)  stand for the result of substituting  § for y 

in«p      and»      respectively. 
I a2 
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1+ follows that In general  a non-determlnlstlc  interpreted 

program (Qp,3»Y' d065 no+ define a unique execution sequence 

<3tiP»3»Y> »s for  Interpreted programs (see sec.  2.3),  but a set 

i<fiP>?I.V>i of execution sequences. 

Example 

The Interpreted program (QP»,3», 1)  defines two execution 

sequences: 

(1,1,-2)   (3,2,-1)   (7,H,-l), and 

(1,1,-2)   (3,2,-1)   (5,3,-2)   (8,3,-1)   (8,3,0)   (9,H,0). 

Let (GP,3»Y) be a non-deterministic interpreted program, and 

^iP,3»Y> be any fixed execution sequence of 1<EP,3/Y>i- 

Let vtV be any vertex of QP, and 6 be a specified total predicate 

from (D )n into lT,Fj. 

Then, 

1. 6  i s ca I Ied a va I i d predicate of v for <^P»3>V>> 

if 

VS,   5«(0^)n:    Pf for  some Ul, there exists a triple of the 

form  U,v,5)  in <CP,3,^, then 6(5) = T. 

2. 6   is ca I led the minima I  valid predicate of v  for <3(ip,3,Y> 

if 

V?. IftDj":    (>(l)  = T  if and only  if  for some UL, there 

exists a triple of the form  (/,v,5)   in <QP,3,Y>- 
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5.2   Weak Termination 

Let Cp be any abstract program, and lnL^ be the wff obtained from 

Gp by applying Algorithm  I   (see sec.  3.1). 

Definition 7 

A non-deterministic program (Cp,3)   is said to terminate weakly,  if 

Vy, Y«(D«>   » there exists at  least one finite execution sequence 

I" l<QP,3'Y>i. 

The proof of the following theorem Is similar to the proof of 

Theorem I in sec. 3.2. 

Theorem 5 

The non-determinictic program (Cip,3)  terminates weakly, 

if and only  If 

%p'3'   ,s unsatisfiable [or equivalently,   Mfcp.g)   is valid]. 

Definition 8 

A non-deterministic abstract program Gp Is said to terminate 

weakly if 

for every  interpretation g, the program (Cp,3) terminates weakly. 
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Tlie proof of the fo! lowing theorem follows from Theorem 5 and 

Definition 8 (see the proof of Theorem 2 in sec. 3.3). 

TTiwrm $ 

Tlie non-determlnlstlc abstract program Op terminates weakly. 

If and only If 

VL^ is unsatlsfiable [or equivalently, -^jp is valid]. 
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5.3   The Algorithm to Construct Uj* 

In this section we shall  describe an algorithm to construct from 

a given abstract program GP a wff iLp.     in the next section we shal I 

state results about the relation between Op and U|jp. 

Algorithm 3 

Let Gp be any non-deterministic abstract program with program 

variables x =  (x-.x,,.. .,xn),  n > I, and input variables y = (y, »Vj»-• • »Vj' 

m i 0.    We shai i construct the wff lljy. In three steps: 

Step I 

Associate with every vertex v. of GP a predicate variable qj, 

where the q.'s are distinct n-adic predicate variables. 

Stan 2 

Let v.  be any vertex of GP (v.  t H). 

Let a.,cr2,...,a    be the set of all  the arcs leading from v.  to 

v.  ,v.   .....v.     respectively.     In step   I  we have associated with the 
'l    '2 'N 

vertex v.  the predicate variable q. and with the vertex Vj   ,   I < j 5 N, 

the predicate variable q.   . 

We shall  define the wff W      (the wff of the vertex v.) as 
vl 

V v^j!, cVq'j (?aj)] 

an. 



62 

1 If v   ■ S  (I.e.,  v.   's the start vertex of CP), then replace 

the occurrence of q.te)   In W     by T, and 
1 vl 

2 If v     = H (I.e., v.    Is the halt vertex of GP),  replace the 

'j JJ 
occurrence of q.   (t^ )   in W     by F. 

'j   "J I 

SteoS 

Let v,,v~t...,Vu be the set of all the vertices of GP (except H), 
I     2 M 

then def i ne ll^ as 

(I) 

V    ^^v.^v/  "'^ V 

'Note that the input variables y are free variables  in \p. 
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EaamaJa 
The wff UL«, of the non-determlnls+lc abstract program Gp» of 

sac.  5.1 will  be constructed as follows: 

Combining steps  I and 2 we obtain 

Ws: T  3 l[~p(y) A q^a)] V [p(y) A q3(y)]J 

W,: q^x) 3 l[~p(x) A q2(f(x))] V [p(x) A qjCx)]) 

W2: q2(x) 3 l[~p<x) A p(f(x)) A qjCa)) V [p(x) A q^a)] V [~p(x) A F]J 

W3: q3(x) 3 l[M>(x) A q3(f(x))l V [p(x) A F]). 

Then by step 3 It follows that 

\(» 
is <x)[W- A W. A W, A H ]. 
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5.4    Strong TTIBInation of Non-Detarmlnlstlc Programs 

"«f'n'tlon 9 

A non-deterministic program (Cp,3)  Is said to terminate strongly 

If 

VV, Y«(0 )m, all the execution sequences In  l«CP,3,V>} "re finite. 

The non-determlnlstlc program (Gp,3) terminates strongly 

If and only  If 

(la. ,3)  Is unsatlsflable [or equlvalently,   (~^jp,3)  's valid]. 

Proof 

We shall prove that  (00,3) does not terminate strongly If and 

only If  (l^p.3>  l8 satlsflable. 

I.    (ap,3) does not terminate strongly» (^,,.3)   '« satisflabie. 

If (CP^) does not terminate strongly, there exists a 

y, Y«<D >m» Bnd an ««cutlon sequence <liP,3,r>, «ßP,3^cl<ßP,3,Y>J. 

which is infinite. 

Let us assign to each predicate variable q,   In 1^,, the minimal 

valid predicate of the vertex v,  for the execution sequence •rfP,3'V>« 

Note that since the execution sequence <CP,3,Y> '* Infinite,   I.e., 

control never reaches the halt vertex,  it follows that the predicate F 

Is the minimal valid predicate of the vertex H for «CP,3,Y>. 

Let r consists of the above assignments for the q^s and with Y 

assigned to y.    Following the construction of ^ (see sec.  5.3, 
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especially note the V connective used In step 2), It Is clear that the 

value of (Ujjp.g,?) Is T, I.e., (^,3) Is satlsflable. This completes 

the proof  In one direction. 

2.     ^tp.S'  's satlsflable»  (CP,3) does not terminate strongly. 

If  fl^jp*))  Is satlsflable, there exist an assignment T for 

O^jp^J)  such that the value (>l(jp,3,r)   is T.   T consists of assignments 

of specified total predicates «,, mapping (0L)n Into iT.FJ,  for the 

predicate variables Qj, and an assignment y, Yt(CL)m,  for the free 

variables y. 

By the construction of 1^,, this  implies that each 8.   is a valid 

predicate of the vertex Vj  for some execution sequence ^iP,3#Y>» 

^»P,3,V>«1<CP,3,Y>), and therefore thfcf F is a valid predicate of the 

halt vertex for ^iP,3»^. 

This Implies that the execution sequence «CP,3,y> Is Infinite 

(I.e., execution does not reach the halt vertex).    So,   (QP,3)  does not 

terminate strongly. 

q.s.d. 
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The above result can be used to prove the convergence of 

recursively defined functions. 

Let us consider,  for example, the functions F.(x) and F.(x) 

defined recursively by the following Algol  conditional  statements: 

FjU)  ■ Jl x - 0 then  I 

else If x > 0 then 2 • F((x-I) 

else F2(-x) • FjCx+l); 

F2(x) - 11 x ■ 0 Itaa 2 

else Ü x < 0 then 3 • F2(x+2)  ♦ 7 

V else iF.d-x)]2. 

Suppose that we want to prove that for every  Integer x, the 

recursive process of computing F.(x) and F-(x) terminates.    We can use 

Theorem 7, since: 

for every  Integer x, the recursive process for computing F|<x) 

and F_(x) terminates, 

If and only  If 

the following non-determlnlstic program  (over 1} terminates 

strongly. 
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x*x-|       x*x+l 

[Consider vwtex I as representing the start of the computation of 

FjCx) and vertex 2 as representing the start of the computation of 

F2(x).] 
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5.5    Strong Termination of Non-DetermInistic Abstract Programs 

A non-deterministic abstract program GP is said to terminate 

strongly,   if for every Interpretation 3# the non-deterministic program 

CP,3) terminates strongly. 

The following theorem follows from Theorem 7 and Definition  10. 

Theorem 8 

A non-deterministic abstract program GP terminates strongly 

If and only  if 

Ujjp is unsatlsflabie [or equivalently, "^hp 's valid]. 

Proof 

GP   terminates strongly, 

if and only  If   (follows by Definition   10) 

for every   interpretation 3,  the non-deterministic program (Cp,3) 

terminates strongly, 

if and only  if   (follows by Theorem 7) 

for every   I nterpretation 3,   (l&.0»3)   's unsatlsf iable, 

if and only If 

ML     is unsatlsf labie. 
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Thaorwn 8 Is a generalization of Theorem 2 of sec. 3.3.    Moreover, 

all the results presented  In sec. 3.4  (Corollaries  I and 2) can also 

be generalized for the strong termination of non-determlnlstic abstract 

programs. 
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PART II 

Introduction 

Since Part I and Part  II of the thesis are  Inlanded to be self- 

contained units, the background  Information necessary to understand 

Part   II   Is entirely contained   In this part. 

An  Interpreted graph  IG consists of a finite directed graph, and 

1, With each vertex v, there  Is associated a domain Dv, and 

2. With each arc a  leading  from vertex v to vertex v', there are 

associated a total test predicate Pa (Dv * |T,Fj), and a total 

function f    (0v A Pa  +DvI). 

Let us represent by a state vector x the current values of the 

variables during an execution of an Interpreted graph   IG,   An 

execution sequence of  IG may start from any vertex v with any 

Initial state vector x tD .    The domain Dv  Is the set of all 

possible state vectors at vertex v, PB represents the condition that 

arc a may be entered from  Its origin, and fa represents the operation 

of changing the state vector x to fa(x) when control moves along 

arc a.     In general, the flow of control through an  Interpreted graph 

Is a non-determlnlstlc process.  I.e., more than one arc may be 

entered from a given vertex with a given state vector.    Execution 

will  halt on vertex v> with state vector x.   If and only  If no predicate 

on any arc leading from v Is true for x. 
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An  Interpreted graph terminates  If and only If all the execution 

sequences of  IG terminate. 

In this part, two necessary and sufficient conditions for the 

termination of  Interpreted graphs are described.    The first condition 

(Theorem  I)   Is defined by means of well-ordered sets and the properties 

of the cycles of the graph, while the second condition (Theorem 2)   Is 

defined by means of the strongly connected components of the graph. 

Floyd [1967] has discussed the use of well-ordered sets for 

proving the termination of programs. 

These results have applications In proving termination of various 

classes of algorithms,  such as deterministic and non-determlnlstlc 

programs and recursively defined functions. 
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CHAPTER   I:    MATHEMATICAL BACKGROUND 

I.I    Well-Ordered Sets 

A pair (S, >)   Is called an ordered set, provided that S  Is a set 

and >•  Is a relation defined for every pair of distinct elements a 

and b of S (and only between distinct elements), and satisfies the 

following two conditions: 

1. If a )• b, then either a > b or b > a; 

2. If a > b and b >• c, then a > c (I.e., the relation  Is 

transitive). 

A we I l-ordered set W  Is an ordered set (S, »   In which every 

non-empty subset has a first element; equlvalently.   In which every 

decreasing sequence of elements a > b > c ... has only finitely many 

elements. 

Examples; 

1. I|
+ - the set of all  non-negative  integers well-ordered by 

Its natural order.   I.e.,   {,0,   I, 2, 3,  ...J. 

2. I + - the set of all  n-tuples of non-negative  Integers for 
n 

some fixed n, n i I,  well-ordered by the usual   lexicographic 

order.  I.e., 

<a|'a2 V >  (bl'b2 V 

If and only If 

ai  = bj, a2 » b2,...,ak_|  = b^,, ak > bk for some k,   I ^ k ^ n. 
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3.    1,   - th« Mt of all   Infinit« monoton« non-lncr«aslng sequences 

of non-negative  Integers with finitely many non-«ro 

entltlos       well-ordered by th« usual   l.xlcographlc ord«r. 

I.e., 

(a(,a2,a3,...) > {b(,b2,b3f...) 

If and only If 

a,  " b|. »2 " ^'•••'ak-l  ' bk-l' 8k > bk for *«"• k,   I i K. 

1.2   Dlr«ct«q Graphs 

A dlr«ct«d .gra^ G (graph,   for short)   Is an ordered triple <V,L,A> 

where: 

1. V Is a non-empty set of elements called the vertices of G; 

2. L  Is a non-empty set of elements called the  labels of G; and 

3. A  Is a  set of ordered triples  (v./.v»), where v»Vf v'tV and 

UL.    These triples are colled the arcs of G. 

If V and L are finite sets, G is called a finite directed graph. 

.^      !'e:i lh.e   ,nfln,te sequence  (a,,«  ,a  ,...)   Is  In the set  If 
and only  If 31,   I ^ i, s.t. '    z    3 

VKI < t):    a,   Is a positive   Integer and Bj ^ a      , and 

VKI i I);    a,   =0. 

For exc-nole,   (5.5,4,3,3,3,3,1,0,0,...)   Is an element  in this set. 
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L«t a - (v.i.v') b« an arc of a directed graph.    Than wa define: 

• •    v   - the  Initial vert^ of the arc, 

2. i   - the  label of the arc, 

3. v' - the terminal verte^ of the arc. 

And »e shal I say that the arc a Jtafc ictm the vertex v 1ft the 

vertex v1. 

Let v be a vertex of a directed graph.    Then, 

1. The number  (finite or  Infinite) of all arcs a<A, s.t. v Is 

the Initial vertex of a.  Is called the out-degree of v. 

2. The number  (finite or  Infinite) of all arcs a«A, s.t. v  Is 

the terminal  vertex of a.   Is called the  In-degree of v. 

A Hnlte .gath of a graph G (£ath,  for short)   Is a finite sequence 

of n, n i I, arcs of 6 

Al '| I 
[notation:    v       Uv     —L^     ... —^ ]# 

1 2 3 n 'n-H 

s.t.  the terminal vertex of each arc coincides with the  Initial vertex 

of the succeeding arc. 

We say that: 

I.    The path rngftta the vertices v    , v,    v.       , and these 
1        2 "♦I vertices are sa the path. 
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2. The path Joins the vertices v. and v. 
'l    'n+| 

3. The path Is elementary If the vertices v. , v. .....v. 
'l  '2    'n+l 

are distinct. 

4. The path Is a cycle If the vertex v. coincides with the 
'l 

vertex Vj  , further It Is an elementary cycle If In 

addition the vertices v. , v. .....v, are distinct. 
'l   '2     'n 

An Infinite path of a graph G Is an Infinite sequence of arcs of 

G s.t. the terminal vertex of each arc coincides with the Initial 

vertex of the succeeding arc. A subpath of an Infinite path Is a 

consecutive subsequence (finite or Infinite) of Its arcs. 

We define a ällSSl of a graph G as a set of vertices having the 

property that every cycle meets at least one vertex of the set. 

A graph G Is said to be strongly connected If there Is a path 

Joining any ordered pair of distinct vertices of G. 

Let G be a graph <V,L,A>. We define a subgraph G. - <)l.,l,A.> 

of G as the triple consisting of Vj, L and A., where V. Is a subset 

of V and Aj Is defined by A. - A A (V. x L x V.). 

A subgraph Gj » ^j.L.A^ of G is said to be a strongly connected 

component of 6 If, 

1. Gj Is strongly connected, and 

2. For all subsets V-, £ V s.t. V2 )» V, and V2 3 V,, the subgraph 

Gj ■ <V2,L,A2> is not strongly connected. 
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A tree T • <V,L,A,r> is a directed graph <VfL,A> with a 

distinguished root reV,  s.t.  for every vcV (v f r),  there  Is at  least 

one path from r to v. 

We shall  use the following version of Kttnlg's  Infinity Lemma: 

A tree with no  I n f I n I te paths and with finite out-degree for 

every vertex - J_s f I n I te. 
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CHAPTER 2:  DEFINITIONS 

An Interpreted graph IG consists of a finite directed graph 

<V,L»A>, and 

1. With each vertex vcV, there Is associated a domain 0 , and 

2. With each arc a = (v,i,vl)cA, there Is associated a total 

test predicate P (D -► {T,F}), and a total function 

f (D A P -►D ). 
a  v  a   v 

Let  (v      ,x      '•VxD,,  be an arbitrary vector of an 

interpreted graph   IG. 

An  (v       .x      ) - execution-sequence of   IG Is a  (finite or 

Infinite)  sequence of the form 

(v^,x(o)) 4Üi(v<V), ilü^V^, ^ 

where, 

1. vCJ)<V, i<j)«L and x(j)«D   ...   for all  j ;> 0. 
v J 

2. If {v(j),x<j)) i—► (v(J+l),x<j + l)) Is in the sequence, then 

there exists an arc a = (v(j>,jt(<i),v(j+l))*A s.t. P x(j) = 

True and f x(J> = x(J+l). 
a 

3. If the sequence  is finite and the  last vector   in the sequence 

is  (v      ,x      ), then  for all arcs aeA  leading from v      : 

P x<n)  = False. 
a 
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By the definition of  Interpreted graphs, there may exist In an 

Interpreted graph IGi    a vertex vtV, a state vector xtOv, and two 

distinct arcs a,beA  leading from v - s.t.  both Pax ■ True and 

P x ■ True,  I.e., the predicates on all arcs  leading from the 
b 

vertex v are not necessarily mutually exclusive.     It follows, that 

for the fixed vector   (v<o),x<0>)  « V x D (o), there may exist many 

distinct (v(o),x<o)) - execution sequences of  IG.    For this reason, 

the execution process of an  Interpreted graph, starting with the 

vector  (v(o>,x(o)),   Is described by a tree. 

The execution tree T(v(o).x(o))   Is the tree ■cVM-.A«,  (v(o),x<o))>, 

where, 

1. The set of vertices V1   Is the set of all vectors (v,x)  « V x Dv 

s.t.  there exists an  (v      ,x      ) - execution sequence of   IG 

that contains the vector (v,x). 

2. L Is +he set of  labels of   IG. 

3. The set of arcs A'   Is the set of all  triples  C(v,x) ^.(vSy)) 

€ V'  x L x V  s.t.  there exists an  (v      tx
(o ) - execution 

sequence of   IG that contains  (v,x)  * (v^y). 

4. (v^x^XV1   Is the root-yertex of the tree. 
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JE29BUÜA 

Consider th« Interpreted graph IC* 

;c-l 

(whore  I Is the set of the   Integers). 

"Hiere are three (1,-4) - execution sequences  In   IG»,   I.e., 

three execution sequences that start  from the vertex  I  with x ■ -4, 

(I)       (1,-4)  I (2,-2)   I (2,0), 

(II)       (1,-4)   * (2,4) 1 (1,-3)  I (2,-1)   * (2,1) 1 (1,0), and 

(III)       (1,-4)   * (2,4)  1 (1,-3)   * (2,3) 1 (1,-2)  I (2,2)  1 (1,-1)   * (2,1) 1 (1,0). 

The execution tree T(l,-4) of   IGf   Is: 
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(1,0)   . 
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CHAPTER 3: TERMINATION OF INTERPRETED GRAPHS 

3.1 Termination of Interpreted Graphs (Theorem O 

Definition 

An Interpreted graph Is said to Iscmjjläla If »I I Its execution 

sequences are finite  . 

Notations 

Let o, = (a|.a2 aq), where a. = ^.l^,^*"^  for 

I ^ j < q, be any path of an Interpreted graph. Then let 

1. f x stand for f (...(f (f x))...), and 
« 8q    a2 al 

2. P x stand for 
or 

^(D^a.^^^a.^ A W^l^^'" '|    a2 a|     03 "2    a\ 

(f   (...(f  (f > 
Sq aq-l     a2 al 

A P (f   (...(f  (t x))...)) A f x.D (  ,,. 
a  a__i     a- oi >•..-' 

Jf an Interpreted graph IG terminates, 

then there exists for every vertex v.V a total function Fv 

which maps 0v Into I,*, such th«t for every arc a = (v,i,v') of IG and 

for every x s.t. P_x = True: 

F (x) >  F .(f (x)). 
V        v   a 

'i.e., V(v,x),   (v,x)cV x Dv, all the {v,x) - execution sequences 

are finite. 
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froof 

Assuming that  IG terminates, we have to specify F  (x)  for arbitrary 

vtV and xcD . 
v 

Since IG terminates, we know that the execution tree T(v,x)  has 

no Infinite paths.    Moreover,  since every vertex of T(v,x) has a 

finite out-degree   It  follows by Konlg's Lemma that T(v,x)   Is finite, 

I.e., has finitely many vertices. 

So,   let Fv(x)  be the number of vertices   in T(v,x). 

Now,   It   Is easy to verify that for this choice of F    the condition 

is satisfied. 

q.e.d. 

Theorem  I 

An   Interpreted graph IG terminates   if and only  If there exist: 

1. A cut set V» of the vertices V of IG, and 

2. For every vertex vcV*, a well-ordered  set W    = (S , >• )  and 
v v     v 

a total  function F    which maps D    into S  . 
V r        V v 

such that, 

3. For every cycle a of   IG: 
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..(I)  ,,, .(2) 
v(l) i^ v(2) J^l  v(3)    v(q-|) X^ v(q, /^ v(l) 

(where v(ntV*  and v(k) ^ v(l) for all I < k ^ q), and for 

every x s.t.  P x = True: 

F
V^

(X) >>   '/oV- 

Proof 

• Necessary condition  for termination. 

Follows directly from the  lemma  (with V* = V and W    = i + for 

every v,  vcV). 

* Sufficient condition  for  termination. 

Proof  by contradiction. 

Let us assume that IG does not terminate,   i.e.,  there exists an 

infinite execution sequence y   in  IG, 

Y:       (v
(0',x(°),^(v(",x(l',^(v<2).x(2))l^ 

Let Y'  he the  infinite path 

Y':    v 
(0)^v<l)4iliv(2)l^ 

Since  IG,  by definition,  consists of a  finite directed graph, 

and since Y'   is an  infinite sequence -  it follows, that there exists 

at   least one elementary cycle 0   in   IG,  that occurs (as a  subpath) 

infinitely many times  in Y'- 
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Since V» Is a cut set. It follows that there exists a vertex 

v*eV» that Is on ß. This Implies that v* must occur Infinitely many 

11mes In Y'. 

(n.)  (n-) (n,) 
Let v   ,v   ,v   ,... (0 < n . < n .+! for j i I), be the 

Infinite sequence of all occurrences of the vertex v* In y'- 

Therefore, the Infinite execution sequence y  can be written as 

,„,  ,„,  ,(0)      (n.)  (n.)  /"l' 
Y:  (v

(o,.x(o)) *— ... (v  ' ,x  ' ) ^—♦ 

(n,)  (n,)  /V      (nz)  (nT) /"s
5 

(v Z ,x Z ) 2 ► ... (v 3 (x 
3)i ► 

Then,  by condition  (3)   it follows that 

(n.) (n.) (n  ) 

i.e.,  there   Is an   Infinite decreasing sequence  in W ..     But this 

contradicts the fact that W .   I s a well-ordered set. v* 

q.e.d. 

The following corollaries follow directly from the  lemma and 

Theorem   I. 
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Corollary  I 

An interpreted graph IG,  which has a vertex v* cannon to all 

its   (elementary)  cycles,   terminates 

It and only i± 

there exist a well-ordered set W =  (S, >) and a total  «unction F 

which maps Dv#   into S,   such that for every elementary cycle 

or:     v* •*..."♦ v« and  tor every x  s.t.   P x  = True: 
or 

F(x) > F(f   (x)). 
a 

Corollary 2 

An interpreted graph IG terminates 

if  and only i± 

there exist: 

1. A cut set V» of the vertices V of IG, 

2. A well-ordered set W = (S, >), and 

I.     For every vertex vtV*,  a  total function F.. that maps D 

into S, 

such that 

4. For every elementary path a  of IG: 

.(I)      (2)                (q-l) 
,'" !_>v<2) L_v(3)    v(q-,) i >v(q, 

(where v ", v(q)cV* and v'^'^V* for all j, I < j < q). 
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and for every x  s.t.   P^x)   = True: 

F  (I)"0 >F   (q)(V><))' 

3.2  Termination of^ Interpreted Graphs (Theorem 2) 

Let IG be an interpreted graph constructed from the finite 

directed graph G. 

Then a strongly connected component IG^ o^lG conststs of a 

strongly connected component G1 = <V',L.A'>of 6, and in addition, 

I. With each vertex vtV. there Is associated the domain 0 
v 

of IG, and 

2.     With each arc a«A•,  there are associated the test-predicate 

Pa and the function  f    of   IG. 

Theorem ? 

An   Interpreted graph   IG terminates 

i f and only   |f 

all   its  strongly connected components terminate. 

Proof 

•    Necessary Condition for  Termination 

Follows directly   from the definition of  termination of 

interpreted  graphs. 
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*   ?g»fi<;i?nt Condition for  Termination 

Proof  by Contradiction. 

Let's assume that IG does not terminate,   i.e.,  there exists an 

infinite execution sequence y   i" IG, 

V:       (v^x'o'.i^u'lVM^   (,(2)^(2), 4^ 

Let Y'  be the  infinite path 

Y':    v^l^v'"^^)^... 

Since  IG,   by definition,  consists of a  finite directed graph 

G -  It follows that  IG contains finitely many vertices.     So clearly, 

there ere only  finitely many vertices of  G that meet y' only a  finite 
(nl'     <",) (n   ) 

number of  t,mes.     Let v     '.v    2    v    "     (0 <  n. < n for 
~    J        J+l 

' 1 j< q),   be the   list of  their occurrences   inY'. 

It follows  that all   the vertices v(J)   (j >  n  ) of Y'.  are   in 

some strongly connected component G'  of  G. 

This   implies that  there exists a strongly connected component 

IG' of   IG,   s.t.   the   infinite subsequence of y: 

-.'V'',,'"«-', Li:',/"«'..'%«>, Ijl 

is an infinity execution sequence of IG', i.e., IG- does not terminate. 

Contradiction. 

q.e.d. 
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CHAPTER 4:    APPLICATIONS 

The results of Chapter 3 can be used for proving termination of 

various classes of algorithms.     In this section we shall   Illustrate 

the use of those results for proving termination of: 

1. Programs, and 

2. Recursively defined functions. 

In the first example, we shall use the notion of valid 

interpretation. Roughly speaking, a valid Interpretation of a flow- 

chart Is a mapping of its test-boxes to propositions, such that, if 

the test-box B is mapped to the proposition q, and if the flow of 

control through the flowchart can reach the test-box B with 5 as the 

value of the state vector, then q(5) = True (see Floyd [1967]). 

4,1 ExampIe I : 

Consider the program (Figure I) for evaluating a determinant 

la. .1 of order n, n ^ I, by Gauslan elimination.  Where, 

0 - real variable, 

(a: :'r ^ •   ^   ■ real array, 1 J I < i/J < n " 

i,j,k - integer variables, 

n -  integer constant. 

[We consider the division operator over the real domain as a 

total function, by interpreting, for example, r as  — for  every 
10 

real r.] 



91 

D-0II 
'i 

k ♦ 1 

i 

( k"* v es            /- 

 Kl!. 
D-D'akk 

1 

no 

1 , 

i   ♦ k +  1 

b     ^. L    a.    1 

i 

1 

yes r .„) l  i   = n 

no 

j   -n 1*1+1 

i 

9S 

I 

(   - 
v-,    VI j      -j    "     1 M     j 

■ I 

i 
1 

a..    .a..-X.. . 
U          iJ akk    kJ 

Figure   I 
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k  * k   +   I 

 1  : 

yes 

V n positive  integer 

k *  I 

c 
' 

(I i k ^ n)A 

(k,n   integers) 

Z>^-<B 

,- k  ♦   I 1 

i  • n +  I 3 

J  " n u 
I 1 itä*c/  
I  J  «■ j -  I ^     j  = k?    ^ Z£ 

((I i k < n -   I) 

A <2 £ I < n ♦  I) 

A (i,kfn   integers) 

i   ^  I   ♦   I 

(I < k £ n -   I) 

A  (2 ^ I < n) 

A  (k + l £ j < n + l) 

A  (i,j,k,n   integers) 

Figure   2 
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<I.J>I<)   ♦ (I, l,k+|) 

I-«»- D, 

kk ^ n 

(I £ K^ n) fdSK 

I A(k,n integers) 

i  » n ♦ I (l.j.k)   -(k+l,j,k) 

(i.J.k)  ♦ (l+l,j,k)i 

){l £ k ^ n -  I) 

A(2 i I £ n + I) 

A(l,k,n  Integers) 

* n  ♦ 

j • k (l.j.k)  ♦ (l,nfk) 

d.J.k)  * (l.j-l.k) 

j D 

j »« k 

(I ^ k i n -  I) 

A(2 i I £ n) 

A{k ^ j £ n) 

Ad.j.k.n  Integers) 

Figure 3 
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We want to show that the program terminates for every positive 

integer n. 

Since neither 0 nor any a   . occurs  In a test-box or affect the 

value of any variable that occurs  In a test-box.   It  is clear that by 

erasing the following three assignment boxes: 

D   ♦    D  •  akk , and 

a, . 4. a. . '— • a. .. 
U U      ekk        kj' 

we do not change the termination properties of the program.  In other 

words, 

For every i nteger n, the or I g i na I program (Figure J_) terminates 

j_f and only J_f the reduced program (Figure 2^ terminates. 

One can verify easily that the set of predicates attached to the 

test-boxes of the flowchart of Figure 2 - considering the initial 

predicate "n positive integer" - is a valid interpretation. 

Let's construct now, from the reduced program (Figure 2), the 

appropriate Interpreted graph (Figure 3), s.t. each vertex I, 

I < i < 3, of Figure 3 corresponds to the test-box B. of Figure 2, 

and its domain D.i   is exactly the valid interpretation q. of Figure 2. 
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Note that we have used theorem 2 here, by considering only the 

strongly connected component of our graph. 

It is clear that, 

Ü the i nterpreted graph (Figure 3) terminates, then the 

reduced program (Figure 2) terminates for every positive Integer n. 

Now, use corollary 2, where 

V* = 12,3J is the cut set, 

W = I3 is the well-ordered set, 

F2(i'J.k) = (n-l-k, n+l-l, n+l) is the mapping of D into W, and 

F3<i»j,k) = (n-l-k, n+l-i,j) is the mapping of D, into W. 

Note that when control moves: 

(i)   along the path ba, the value of k is increased by I 

(i.e., the value of n-l-k is decreased by I), 

(ii)  along the arc d, the value of k is not changed while the value 

of i is increased by I (i.e., the value of n+l-i is decreased 

by I), 

(ill) along the arc c, the values of k and i are not changed while 

j is assigned the value n, and 

(iv)  along rhe arc e, the values of k and i are not changed while 

the value of j io decreased by i. 

Therefore it follows, by Corollary 2, that 

The interpreted graph (Figure 3) terminates. 
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This implies that our Gaussian elimination program (Figure I) 

terminates for every positive integer n. 

4.2  Example 2: 

Consider the function gcd(x,y) (McCarthy [i960]).  gcd(x,y) 

computes the greatest common divisor of x and y (where x and y are 

positive integers), and Is defined recursively using the Euclidean 

A I gor Ithm by 

gcd(x,y) = [x > y -► gcd(y,x); 

rem(y(x) = 0 -► x; 

T -► gcd(rem(y,x) ,x) ], 

where rem(u(v) Is the remainder of —. 
v 

The Algol meaning of this definition is: 

gcd(x,y) = it x > y then gcd(y,x) 

else If rem(y,x) = 0 then x 

else gcd(rem(y,x),x). 

We want to show that for every pair (x,y) of positive Integers, 

the recursive process for computing gc1(x,y) always terminates. 
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(x.y) * (rem(y,x),x) (x.V) * (y.x) 

(x / y) A (rem(y,x) ^ 0) 

D . .positive,   ^positive, 
1 integers1  lintegers' 

Fi gure 4 

Eiy considering vertex I in Figur., 4 as representing the start 

of the computation of gcd. for each pair (x.y), It follows that: 

For every pair of positive integers (x,y), the recursive 

process for computing gcd(x,y) tarminates, 

i f and only if 

the interpreted graph (Figure 4) terminates. 

Since this interpreted graph consists only of one vertex, we 

shall use Corollary I to show its termination. 

So, let l_S_i1  be the well-ordered set, and F(x.v) = remty,^ 

the mapping of D into W. 
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Since the graph contains two elementary cycles, or and f}, we have 

to show: 

1. V(x,y): P (x,y) = True« F(x,y) > F(y,x), and 
Or 

2. V(x,y): Pa(x,y) = True =• F(x,y) > F(rem(y,x) ,x). 

Proof: 

I •  Pa<x.y) 
s True • (x#y)tD A (x > y) 

» (re(ii(y,x) = y) A (y > refn(x,y) ^ 0) 

■» remCy.x) > re(n(x,y) 

"• F(x,y) > F(y,x) . 

2.  P.Cx.y) = True =» (x,y)eD A (x ^ y) A (rem(y,x) ^ 0) A (rem(y,x) ,x)eD 

^ (x positive integer) A rem(y#x) positive integer 

• rem(y,x) > rem(x,rem(y,x)) 

=» F(x(y) > F(rein(y ,x) ,x). 

So by corollary I, it follows that the interpreted graph 

(Figure 4) terminates, which Implies the desired result. 

*Note that for every non-negative integer x, and for every 
positive z;  z > rem(x,z) > 0. 
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